如右图,在四棱锥中,底面为平行四边形,,,为中点,平面, ,为中点.(1)证明://平面;(2)证明:平面;(3)求直线与平面所成角的正切值.
已知函数. (Ⅰ)求曲线在点处的切线方程; (Ⅱ)求证:当时,; (Ⅲ)设实数使得对恒成立,求的最大值.
如图,在四棱锥中,为等边三角形,平面平面,,,,,为的中点. (Ⅰ)求证:; (Ⅱ)求二面角的余弦值; (Ⅲ)若平面,求的值.
,两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下: 组:10,11,12,13,14,15,16 组:12,13,15,16,17,14, 假设所有病人的康复时间互相独立,从,两组随机各选1人,组选出的人记为甲,组选出的 人记为乙. (Ⅰ)求甲的康复时间不少于14天的概率; (Ⅱ)如果,求甲的康复时间比乙的康复时间长的概率; (Ⅲ)当为何值时,,两组病人康复时间的方差相等?(结论不要求证明)
已知函数. (Ⅰ)求的最小正周期; (Ⅱ)求在区间上的最小值.
(本小题满分14分) 已知函数.(1)试讨论函数在区间上的单调性;(2)若当时,函数的取值范围恰为,求实数的值.