(本小题满分12分)如图,在平面四边形中,是正三角形,,. (Ⅰ)将四边形的面积表示成关于的函数;(Ⅱ)求的最大值及此时的值.
对某电子元件进行寿命追踪调查,所得情况如下频率分布直方图. (1)图中纵坐标处刻度不清,根据图表所提供的数据还原; (2)根据图表的数据按分层抽样,抽取个元件,寿命为之间的应抽取几个; (3)从(2)中抽出的寿命落在之间的元件中任取个元件,求事件“恰好有一个寿命为,一个寿命为”的概率.
在中,角所对的边为,角为锐角,若,且. (1)求的大小; (2)若,求的面积.
已知函数. (Ⅰ)若,求在点处的切线方程; (Ⅱ)求函数的极值点; (Ⅲ)若恒成立,求的取值范围.
数列、的每一项都是正数,,,且、、成等差数列,、、成等比数列,. (Ⅰ)求、的值; (Ⅱ)求数列、的通项公式; (Ⅲ)证明:对一切正整数,有.
如图所示,已知椭圆的两个焦点分别为、,且到直线的距离等于椭圆的短轴长. (Ⅰ) 求椭圆的方程; (Ⅱ) 若圆的圆心为(),且经过、,是椭圆上的动点且在圆外,过作圆的切线,切点为,当的最大值为时,求的值.