设函数(、),若,且对任意实数()不等式0恒成立.(Ⅰ)求实数、的值;(Ⅱ)当[-2,2]时,是单调函数,求实数的取值范围.
已知函数 (1)若函数在的单调递减区间(—∞,2],求函数在区间[3,5]上的最大值. (2)若函数在在单区间(—∞,2]上是单调递减,求函数的最大值.
判断并利用定义证明f(x)=在(-∞,0)上的增减性.
设函数, (1)若函数在处与直线相切; ①求实数的值;②求函数上的最大值; (2)当时,若不等式对所有的都成立,求实数的取值范围.
如图,四棱锥的底面为矩形,且,,,(Ⅰ)平面与平面是否垂直?并说明理由;(Ⅱ)求直线与平面所成角的正弦值.
一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为,记. (1)分别求出取得最大值和最小值时的概率;(2)求的分布列及数学期望.