(本小题12分)设函数.(1)求的单调区间;(2)若="1" ,为整数,且当0时,,求的最大值.
已知命题,命题的定义域为R,若,求实数的取值范围。
若函数在上是减函数,则实数的取值范围是.
已知复数为实数,为虚数单位,则实数的值为.
(本小题满分13分)已知函数,,是常数. (1)求函数的图象在点处的切线方程; (2)若函数图象上的点都在第一象限,试求常数的取值范围; (3)证明:,存在,使.
(本小题满分13分)某种商品的成本为5元/ 件,开始按8元/件销售,销售量为50件,为了获得最大利润,商家先后采取了提价与降价两种措施进行试销。经试销发现:销售价每上涨1元每天销售量就减少10件;而降价后,日销售量Q(件)与实际销售价x(元)满足关系: (1)求总利润(利润=销售额-成本)y(元)与销售价x(件)的函数关系式; (2)试问:当实际销售价为多少元时,总利润最大.