(本小题满分12分)如图所示多面体中,⊥平面,为平行四边形,分别为的中点,,,.(1)求证:∥平面;(2)若∠=90°,求证;(3)若∠=120°,求该多面体的体积.
已知定义在实数集R上的奇函数有最小正周期2,且当时,. (1)求在上的解析式; (2)试判断在上的单调性,并证明; (3)是否存在实数,使方程在R上有解?若存在,求出的范围.若不存在,说明理由.
(1)化简求值:; (2)求函数的定义域.
已知函数、. (1)讨论函数的奇偶性(只写结论,不要求证明); (2)在构成函数的映射中,当输入值为和2时分别对应的输出值为和,求、的值; (3)在(2)的条件下,求函数()的最大值.
定义在上的函数满足且当时, 都有; (1)判断在上的单调性,并证明你的结论. (2)若是奇函数, 不等式对所有的恒成立, 求的取值范围.
随机地把一根长度为8的铁丝截成3段. (1)若要求三段的长度均为正整数,求恰好截成三角形三边的概率. (2)若截成任意长度的三段,求恰好截成三角形三边的概率.