(1) (2)(3)(4)(5) (6)
如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.
如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形;(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;(3)在(2)中:①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当y取最小值时,判断△PQC的形状,并说明理由.
已知抛物线过两点(m,0)、(n,0),且,抛物线于双曲线(x>0)的交点为(1,d).(1)求抛物线与双曲线的解析式;(2)已知点都在双曲线(x>0)上,它们的横坐标分别为,O为坐标原点,记,点Q在双曲线(x<0)上,过Q作QM⊥y轴于M,记。求的值.
做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A,B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获毛利润分别为30元和40元,乙店铺获毛利润分别为27元和36元。某日王老板进货A款式服装35件,B款式服装25件。怎样分配给每个店铺各30件服装,使得在保证乙店铺毛利润不小于950元的前提下,王老板获取的总毛利润最大?最大的总毛利润是多少?
如图,⊙O的直径=6cm,是延长线上的一点,过点作⊙O的切线,切点为,连接.(1)若30°,求PC的长;(2)若点在的延长线上运动,的平分线交于点,你认为∠的大小是否发生变化?若变化,请说明理由;若不变,求出∠的值.