命题P:函数内单调递减;命题Q:曲线轴交于不同的两点. 如果“P\/Q”为真且“P/\Q”为假,求a的取值范围.
(本题12分,)有6名同学站成一排,求:(1)甲不站排头也不站排尾有多少种不同的排法:(2)甲、乙、丙不相邻有多少种不同的排法.(均须先列式再用数字作答)
(本题13分)在几何体ABCDE中,∠BAC= ,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1. (1)求证:DC∥平面ABE;(2)求证:AF⊥平面BCDE;(3)求几何体ABCDE的体积.
(本题12分)一只口袋内装有大小相同的5只球,其中3只白球,2只黑球.现从口袋中每次任取一球,每次取出不放回,连续取两次.问:(1)取出的两只球都是白球的概率是多少?(2)取出的两只球至少有一个白球的概率是多少?
(本小题满分14分)在医学生物学试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔. (Ⅰ)求笼内恰好剩下1只果蝇的概率; (Ⅱ)求笼内至少剩下5只果蝇的概率.
(本小题满分13分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.