(本小题满分13分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.
已知椭圆C的两焦点分别为,长轴长为6, ⑴求椭圆C的标准方程; ⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。.
已知的第五项的二项式系数与第三项的二项式系数的比是, (1)求n; (2)求展开式中常数项.
修建一个面积为平方米的矩形场地的围墙,要求在前面墙的正中间留一个宽度为2米的出入口,后面墙长度不超过20米,已知后面墙的造价为每米45元,其它墙的造价为每米180元,设后面墙长度为x米,修建此矩形场地围墙的总费用为元. (1)求的表达式; (2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
已知 (1)判断的奇偶性; (2)讨论的单调性; (3)当时,恒成立,求b的取值范围.
设z是虚数,是实数,且. (1)求的值及z的实部的取值范围. (2)设,求的最小值.