(本小题满分12分)某工厂用7万元钱购买了一台新机器,运输安装费用2千元,每年投保、动力消耗的费用也为2千元,每年的保养、维修、更换易损零件的费用逐年增加,第一年为2千元,第二年为3千元,第三年为4千元,依此类推,即每年增加1千元.问这台机器最佳使用年限是多少年?并求出年平均费用的最小值.(最佳使用年限佳是使年平均费用最小的时间)
(本小题满分16分) 已知函数f(x)=为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为 (Ⅰ)求f()的值; (Ⅱ)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标延长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
(本小题满分15分)已知函数,的最大值是1,其图像经过点. (1)求的解析式; (2)已知,且,,求的值.
(本小题满分15分) 已知函数在区间上的值域为 (1)求的值 (2)若关于的函数在上为单调函数,求的取值范围
(本小题满分14分).已知角的终边经过点 (1)求和的值; (2)若,求的值.
已知函数 (1)用五点法画出它在一个周期内的闭区间上的图象; (2)指出的周期、振幅、初相、对称轴; (3)说明此函数图象可由上的图象经怎样的变换得到