某学校办公楼前有一长为,宽为的长方形空地,在中心位置留出一个半径为的圆形区域建一个喷泉,两边是两块长方形的休息区,阴影部分为绿地.(1)用含字母和的式子表示阴影部分的面积;(2)当=4,=3,=1,=2时,阴影部分面积是多少?(取3)
【改编题】已知:如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙O与BC边相切于点D,连接AD.(1)求证:AD是∠BAC的平分线;(2)若AC=3,tanB=,求⊙O的半径.
【改编题】如图(1),在等边的顶点B、C处各有一只蜗牛,它们同时出发△ABC分别以每分钟1各单位的速度油B向C和由C向A爬行,其中一只蜗牛爬到终点s时,另一只也停止运动,经过t分钟后,它们分别爬行到D,P处,请问:(1)在爬行过程中,BD和AP始终相等吗?为什么?(2)问蜗牛在爬行过程中BD与AP所成的∠DQA大小有无变化?请证明你的结论.(3)若蜗牛沿着BC和CA的延长线爬行,BD与AP交于点Q,其他条件不变,如图(2)所示,蜗牛爬行过程中的∠DQA大小变化了吗?若无变化,请证明.若有变化,请直接写出∠DQA的度数.
【改编题】如图,在△ABC中,已知∠B=60°,∠C=30°,AE是△ABC角平分线,求:(1)作BC边上的高AD;(2)∠DAE的度数.
如图,一次函数与反比例函数的图象交于A(1,m)、B(4,n)两点.(1)求A、B两点的坐标和反比例函数的解析式;(2)根据图象,直接写出当y>y时x的取值范围;(3)求△AOB的面积.
如图,在扇形OAB中,∠AOB=90°,半径OA=6.将扇形OAB沿过点B的直线折叠。点O恰好落在弧AB上点D处,折痕交OA于点C,求整个阴影部分的周长和面积。