已知向量,,函数,(1)求的最小正周期;(2)当时,求的单调递增区间;(3)说明的图像可以由的图像经过怎样的变换而得到。
已知线段PQ的端点端点Q在圆上运动,求线段PQ的中点的轨迹方程。
已知直线过点且在两坐标轴上的截距的绝对值相等,求直线的方程。
如图,在正方体中,求: (1)异面直线与所成的角; (2)与所成的角。
正四棱柱中,底面边长为,侧棱长为,为棱的中点,记以为棱,,为面的二面角大小为, (1)是否存在值,使直线平面, 若存在,求出值;若不存在,说明理由; (2)试比较与的大小。
已知:如图,矩形,平面,分别是的中点, (1)求证:直线直线, (2)若平面与平面所成的锐二面角为,能否确定使直线是异面直线与的公垂线.若能确定,求出的值;若不能确定,说明理由。