已知向量,,函数,(1)求的最小正周期;(2)当时,求的单调递增区间;(3)说明的图像可以由的图像经过怎样的变换而得到。
(本小题8分)在的展开式中,只有第6项的二项式系数最大求:(1)n的值(2)系数的绝对值最大的项是第几项?该项是什么?(3)系数最大的项
(本小题满分8分)袋中有大小、形状相同的红、白球各一个,现依次有放回地随机摸取3次,每次摸取一个球.(1) 求三次颜色全相同的概率;(2)若摸到红球时得2分,摸到白球时得1分,求3次摸球所得总分不小于5的概率.[来
(本小题满分8分)某校高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中男生的人数,(1)请列出X的分布列;(2)根据你所列的分布列求选出的4人中至少有3名男生的概率
有4张分别标有数字1,2,3,4的红色卡片和2张分别标有数字1,2的蓝色卡片,从这6张卡片中取出不同的4张卡片.(1)如果要求至少有1张蓝色卡片,那么有多少种不同的取法?(2)如果取出的4张卡片所标数字之和等于10,并将它们排成一行,那么有多少种不同的排法?
(本小题满分8分)某高级中学共有学生3000名,各年级男、女生人数如下表:
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是.(1)问高二年级有多少名女生?(2)现对各年级用分层抽样的方法在全校抽取300名学生,问应在高三年级抽取多少名学生?