(1)观察图中的各个角,寻找对顶角(不含平角):①如图a中,共有_________对对顶角;②如图b中,共有_________对对顶角;③如图c中,共有_________对对顶角;④探究①—③各题中直线条数与对顶角对数之间的关系,若有n条直线相交于一点,则可形成_________对对顶角;(2)若n条直线两两相交于不同的点时,可形成_________对对顶角.你能将上述两种情形归纳一下吗?
已知关于的方程. (1)若这个方程有实数根,求的取值范围; (2)若这个方程有一个根为1,求的值.
解下列方程.(每小题4分,共16分) (1) (2) (3)(配方法) (4)(公式法)
如图,在平面直角坐标系中,已知点坐标为(2,4),直线与轴相交于点,连结,抛物线从点沿方向平移,与直线交于点,顶点到点时停止移动. (1)求线段所在直线的函数解析式; (2)设抛物线顶点的横坐标为. ①用的代数式表示点的坐标; ②当为何值时,线段最短; (3)当线段最短时,相应的抛物线上是否存在点,使△的面积与△的面积相等,若存在,请直接写出点的坐标;若不存在,请说明理由.
请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘: ⑴用树状图表示出所有可能的寻宝情况; ⑵求在寻宝游戏中胜出的概率.
小明在解一元二次方程时,发现有这样一种解法: 如:解方程. 解:原方程可变形,得.,,. 直接开平方并整理,得. 我们称小明这种解法为“平均数法”. (1)下面是小明用“平均数法”解方程时写的解题过程. 解:原方程可变形,得.,. 直接开平方并整理,得¤. 上述过程中的“”,“” ,“☆”,“¤”表示的数分别为_____,_____,_____,_____. (2)请用“平均数法”解方程:.