设且.(I)当时,求实数的取值范围;(II)当时,求的最小值.
求与轴相切,圆心在直线上,且被直线截得的弦长为的圆的方程.
已知直线经过直线的交点,且点到直线的距离为3,求直线的方程.
设为实数,函数. (1)若,求的取值范围; (2)求的最小值; (3)设函数,直接写出(不需给出演算步骤)不等式的解集.
设函数对于任意都有且时。(1)求; (2)证明:是奇函数; (3)试问在时是否有最大、最小值?如果有,请求出来,如果没有,说明理由.
已知函数是定义在上的奇函数,且,若,,则有.(1)判断的单调性,并加以证明;(2)解不等式;(3)若对所有,恒成立,求实数的取值范围.