在一条笔直的工艺流水线上有个工作台,将工艺流水线用如图所示的数轴表示,各工作台的坐标分别为,,,,每个工作台上有若干名工人.现要在流水线上建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短.(Ⅰ)若,每个工作台上只有一名工人,试确定供应站的位置;(Ⅱ)若,工作台从左到右的人数依次为,,,,,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.
已知圆. (Ⅰ)写出圆C的标准方程,并指出圆心坐标和半径大小; (Ⅱ)是否存在斜率为的直线m,使m被圆C截得的弦为AB,且(为坐标原点).若存在,求出直线m的方程; 若不存在,说明理由.
如图,四棱锥的底面为矩形,,,分别是的中点,. (Ⅰ)求证:平面; (Ⅱ)求证:平面平面.
已知正方形的中点为直线和的交点,正方形一边所在直线的方程为,求其他三边所在直线的方程.
已知正方体. (Ⅰ)求证:平面平面; (Ⅱ)求直线与所成角的大小.
(本题14分)已知函数. (1)若,试用定义证明:在上单调递增; (2)若,当时不等式恒成立,求的取值范围.