已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取 ( 无放回 ) 3个球,记随机变量X为取出3球所得分数之和.(Ⅰ) 求X的分布列;(Ⅱ) 求X的数学期望E(X).
(本题满分14分)在△ABC中,已知B=45°,D是BC边上的一点,AB=5,AC=14,DC=6,求AD的长.
(本题满分14分)已知数列的前项和为,点均在函数的图象上(1)求数列的通项公式(2)若数列的首项是1,公比为的等比数列,求数列的前项和.
已知方向向量为的直线过点和椭圆C: 的焦点,且椭圆C的中心关于直线的对称点在椭圆的右准线上, 直线过点交椭圆C于M、N两点. (1)求椭圆C的方程; (2)若设是椭圆C的右焦点,若,求直线的方程; (3)设(为坐标原点),当直线绕点转动时,求的取值范围.
已知圆C满足:①截Y轴所得弦长为2,②被X轴分成两段弧,其弧长的比为3∶1,③圆心到直线:的距离为.(1)求圆C的方程;(2)过点的直线能否与圆C相切,若相切,求切线方程,若不相切,说明理由.
已知椭圆C:,直线过点P交椭圆C于A、B两点.(1)若P是AB中点,求直线的方程及弦AB的长;(2)求弦AB中点M的轨迹方程.