已知钝角的顶点在原点,始边与轴的正半轴重合,终边与单位圆相交于点. (Ⅰ) 求的值;(Ⅱ) 若函数, 试问该函数的图象可由的图象经过怎样的平移和伸缩变换得到.
已知函数,(其中为常数). (1)如果函数和有相同的极值点,求的值; (2)设,问是否存在,使得,若存在,请求出实数的取值范围;若不存在,请说明理由. (3)记函数,若函数有5个不同的零点,求实数的取值范围.
(1)已知定点、,动点N满足(O为坐标原点),,,,求点P的轨迹方程. (2)如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点, (ⅰ)设直线的斜率分别为、,求证:为定值; (ⅱ)当点运动时,以为直径的圆是否经过定点?请证明你的结论.
已知数列中,. (1)求证:是等比数列,并求的通项公式; (2)数列满足,数列的前n项和为,若不等式对一切恒成立,求的取值范围.
如图,已知四棱锥中,平面,底面是直角梯形, 且. (1)求证:平面; (2)求证:平面; (3)若是的中点,求三棱锥的体积.
对某电子元件进行寿命追踪调查,所得情况如右频率分布直方图. (1)图中纵坐标处刻度不清,根据图表所提供的数据还原; (2)根据图表的数据按分层抽样,抽取个元件,寿命为之间的应抽取几个; (3)从(2)中抽出的寿命落在之间的元件中任取个元件,求事件“恰好有一个寿命为,一个寿命为”的概率.