已知抛物线D的顶点是椭圆的中心,焦点与该椭圆的右焦点重合。(1)求抛物线D的方程;(2)已知动直线l过点P(4,0),交抛物线D于A,B两点(i)若直线l的斜率为1,求AB的长;(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出m的方程,如果不存在,说明理由。
( 已知椭圆的左焦点及点,原点到直线的距离为. (1)求椭圆的离心率; (2)若点关于直线的对称点在圆上,求椭圆的方程及点的坐标.
如图,有一正方形钢板缺损一角(图中的阴影部分),边缘线是以直线AD为对称轴,以线段的中点为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.若正方形的边长为2米,问如何画切割线,可使剩余的直角梯形的面积最大?并求其最大值.
(本小题满分14分) 已知函数,其中实数是常数. (1)已知,,求事件A“”发生的概率; (2)若是上的奇函数,是在区间上的最小值,求当时的解析式.
(本小题满分12分) 如图,在四棱锥中,,,,平面平面,是线段上一点,,,. (1)证明:平面; (2)设三棱锥与四棱锥的体积分别为与,求的值.
(本小题满分14分) 已知向量与向量垂直,其中为第二象限角. (1)求的值; (2)在中,分别为所对的边,若,求的值.