已知抛物线D的顶点是椭圆的中心,焦点与该椭圆的右焦点重合。(1)求抛物线D的方程;(2)已知动直线l过点P(4,0),交抛物线D于A,B两点(i)若直线l的斜率为1,求AB的长;(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出m的方程,如果不存在,说明理由。
用长为16米的篱笆,借助墙角围成一个矩形ABCD(如图),在P处有一棵树与两墙的距离分别为a米(0<a<12 )和4米。若此树不圈在矩形外,求矩形ABCD面积的最大值M.
已知函数.(1)求函数的定义域;(2)若函数在[10,+∞)上单调递增,求k的取值范围.
已知为的最小正周期, ,且.求的值.
.已知是偶函数.(1)求的值;(2)证明:对任意实数,函数的图象与直线最多只有一个交点.
集合是由适合以下性质的函数组成:对于任意,,且在上是增函数,(1)试判断及是否在集合中,若不在中,试说明理由;(2)对于(1)中你认为集合中的函数,不等式是否对任意恒成立,试证明你的结论.