设二次函数,对任意实数,恒成立;正数数列满足.(1)求函数的解析式和值域;(2)试写出一个区间,使得当时,数列在这个区间上是递增数列,并说明理由;(3)若已知,求证:数列是等比数列
如图,是圆的直径,、在圆上,、的延长线交直线于点、,.求证: (Ⅰ)直线是圆的切线; (Ⅱ).
设函数(,为常数) (Ⅰ)讨论的单调性; (Ⅱ)若,证明:当时,.
已知是椭圆的右焦点,圆与轴交于两点,是椭圆与圆的一个交点,且. (Ⅰ)求椭圆的离心率; (Ⅱ)过点与圆相切的直线与的另一交点为,且的面积等于,求椭圆的方程.
如图,四边形是正方形,,,, . (Ⅰ)求证:平面平面; (Ⅱ)若与所成的角为,求二面角的余弦值.
某种报纸,进货商当天以每份进价元从报社购进,以每份售价元售出。若当天卖不完,剩余报纸报社以每份元的价格回收。根据市场统计,得到这个季节的日销售量(单位:份)的频率分布直方图(如图所示),将频率视为概率。 (Ⅰ)求频率分布直方图中的值; (Ⅱ)若进货量为(单位:份),当时,求利润的表达式; (Ⅲ)若当天进货量,求利润的分布列和数学期望(统计方法中,同一组数据常用该组区间的中点值作为代表).