如图,已知∠B=∠E=90°,AC=DF,BF=EC.求证:AB=DE.
如图,矩形 ABCD 中, AB = m , BC = n ,将此矩形绕点 B 顺时针方向旋转 θ ( 0 ° < θ < 90 ° ) 得到矩形 A 1 B C 1 D 1 ,点 A 1 在边 CD 上.
(1)若 m = 2 , n = 1 ,求在旋转过程中,点 D 到点 D 1 所经过路径的长度;
(2)将矩形 A 1 B C 1 D 1 继续绕点 B 顺时针方向旋转得到矩形 A 2 B C 2 D 2 ,点 D 2 在 BC 的延长线上,设边 A 2 B 与 CD 交于点 E ,若 A 1 E EC = 6 − 1 ,求 n m 的值.
如图,平面直角坐标系中,已知点 B 的坐标为 ( 6 , 4 ) .
(1)请用直尺(不带刻度)和圆规作一条直线 AC ,它与 x 轴和 y 轴的正半轴分别交于点 A 和点 C ,且使 ∠ ABC = 90 ° , ΔABC 与 ΔAOC 的面积相等.(作图不必写作法,但要保留作图痕迹. )
(2)问:(1)中这样的直线 AC 是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线 AC ,并写出与之对应的函数表达式.
一水果店是 A 酒店某种水果的首选供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了 2600 kg 的这种水果.已知水果店每售出 1 kg 该水果可获利润10元,未售出的部分每 1 kg 将亏损6元,以 x (单位: kg , 2000 ⩽ x ⩽ 3000 ) 表示 A 酒店本月对这种水果的需求量, y (元 ) 表示水果店销售这批水果所获得的利润.
(1)求 y 关于 x 的函数表达式;
(2)问:当 A 酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22000元?
如图,四边形 ABCD 内接于 ⊙ O , AB = 17 , CD = 10 , ∠ A = 90 ° , cos B = 3 5 ,求 AD 的长.
某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)