已知a>0且a≠1,设命题p:函数y=+1在R上单调递减,命题q:曲线y=+(2a-3)x+1与x轴交于不同的两点,如果“p∨q”为真,且“p∧q”为假,求a的取值范围.
某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命 (单位:小时)进行了统计,统计结果如下表所示:
(1)将各组的频率填入表中; (2)根据上述统计结果,计算灯管使用寿命不足1500小时的频率; (3)该公司某办公室新安装了这种型号的灯管3支,若将上述频率作为概率,试求至少有2支灯管的使用寿命不足1500小时的概率
如图所示的几何体中,已知平面平面,,且,,,求证:
甲、乙两篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率是. 求: (1)乙投球的命中率; (2)甲投球2次,至少命中1次的概率; (3)若甲、乙二人各投球2次,求两人共命中2次的概率
10分) 如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:
一个袋中装有大小相同的黑球、白球和红球. 已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是,从中任意摸出2个球,至少得到1 个白球的概率是. 求: (1)从中任意摸出2个球,得到的都是黑球的概率; (2)袋中白球的个数