在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1) 当点P与点C重合时(如图①).求证:△BOG≌△POE;(2)通过观察、测量、猜想:= ,并结合图②证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图③),若∠ACB=α,求的值.(用含α的式子表示)
如图,已知在平面直角坐标系xOy中,抛物线与x轴交于点A、B(点A在点B右侧),与y轴交于点C(0,-3),且OA=2OC. (1)求这条抛物线的表达式及顶点M的坐标; (2)求的值; (3)如果点D在这条抛物线的对称轴上,且∠CAD=45º,求点D的坐标.
已知:如图,在正方形ABCD中,点E是边AD的中点,联结BE,过点A作,分别交BE、CD于点H、F,联结BF.(1)求证:BE=BF;(2)联结BD,交AF于点O,联结OE.求证:
甲、乙两车都从A地前往B地,如图分别表示甲、乙两车离A地的距离S(千米)与时间t(分钟)的函数关系.已知甲车出发10分钟后乙车才出发,甲车中途因故停止行驶一段时间后按原速继续驶向B地,最终甲、乙两车同时到达B地,根据图中提供的信息解答下列问题:(1)甲、乙两车行驶时的速度分别为多少?(2)乙车出发多少分钟后第一次与甲车相遇?(3)甲车中途因故障停止行驶的时间为多少分钟?
已知:如图,∠PAQ=30°,在边AP上顺次截取AB=3cm,BC=10cm,以BC为直径作⊙O交射线AQ于E、F两点,求:(1)圆心O到AQ的距离;(2)线段EF的长.
解不等式组:并把解集在数轴上表示出来