(本小题满分12分)在直角坐标系中,以为圆心的圆与直线相切.(I)求圆的方程;(II)圆与轴相交于两点,圆内的动点使成等比数列,求的取值范围.
求适合下列条件的椭圆的标准方程:(1)两个焦点坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0);(2)焦点在y轴上,且经过两个点(0,2)和(1,0);(3)经过P(-2,1),Q(,-2)两点.
在平面直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆+y2=1有两个不同的交点P和Q.(1)求k的取值范围;(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A、B,是否存在常数k,使得向量+与共线?如果存在,求k值;如果不存在,请说明理由.
根据下列条件求椭圆的标准方程:(1)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和,过P作长轴的垂线恰好过椭圆的一个焦点;(2)经过两点A(0,2)和B.
如图所示,已知A、B、C是椭圆E:=1(a>b>0)上的三点,其中点 A的坐标为(2,0),BC过椭圆的中心O,且AC⊥BC,|BC|=2|AC|.(1)求点C的坐标及椭圆E的方程;(2)若椭圆E上存在两点P、Q,使得∠PCQ的平分线总是垂直于x轴,试判断向量与是否共线,并给出证明.
(1)已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点P(3,0),求椭圆的方程; (2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1(,1)、P2(-,-),求椭圆的方程.