(本小题满分14分)已知向量,,函数.(1)求函数的解析式;(2)当时,求的单调递增区间;(3)说明的图象可以由的图象经过怎样的变换而得到.
已知函数(1)解不等式(2)若.求证:.
在直角坐标系中,曲线C的参数方程为(为参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,点,直线l的极坐标方程为.(1)判断点P与直线l的位置关系,说明理由;(2)设直线l与曲线C的两个交点为A、B,求的值.
已知为半圆的直径,,为半圆上一点,过点作半圆的切线,过点作于,交圆于点,.(Ⅰ)求证:平分;(Ⅱ)求的长.
已知函数(其中).(Ⅰ)若为的极值点,求的值;(Ⅱ)在(Ⅰ)的条件下,解不等式;(Ⅲ)若函数在区间上单调递增,求实数的取值范围.
已知椭圆C的左、右焦点分别为,椭圆的离心率为,且椭圆经过点.(1)求椭圆C的标准方程;(2)线段是椭圆过点的弦,且,求内切圆面积最大时实数的值.