如图,已知反比例函数y=过点P, P点的坐标为(3-m,2m),m是分式方程的解,PA⊥x轴于点A,PB⊥y轴于点B.(1)试判断四边形PAOB的形状,并说明理由.(2)连结AB,E为AB上的一点,EF⊥BP于点F,G为AE的中点,连结OG、FG,试问FG和OG有何数量关系?请写出你的结论并证明.(3)若M为反比例函数y=在第三象限内的一动点,过M作MN⊥x轴于交AB的延长线于点N,是否存在一点M使得四边形OMNB为等腰梯形?若存在,请求出M点的坐标;若不存在,请说明理由.
在每年召开的市人代会上, 某市财政局都要报告年度市财政预算和执行情况. 以下是根据2007~2011年度报告中有关数据制作的市财政教育预算与实际投入统计图表的一部分(1)请在表的空格内填入2007年市财政教育实际投入与预算的差值;(2)求2007~2011年某市财政教育实际投入与预算差值的平均数;(3)已知2012年某市财政教育预算是141.7亿元, 在此基础上, 如果2012年某市财政教育实际投入按照(2)中求出的平均数增长, 估计它的金额可能达到多少亿元?
如图, 中, .(1) 只用直尺(没有刻度)和圆规, 作出的平分线和边上的中线(要求保留作图痕迹, 不必写出作法): (2) 完成(1)题的作图后, 若, 在上存在一点, 可以使得最小, 作出这个点(不必写出理由), 并写出这个最小值.
把20根火柴棒首尾相接, 围成一个长方形. 若要使长方形的长与宽的差超过3根火柴棒的长度, 那么能围成哪几种不同长宽的长方形?
在平面直角坐标系xOy中,抛物线y= -x2+x+m2-3m+2 与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上。 (1) 求点B的坐标; (2) 点P在线段OA上,从O点出发向A点运动,过P点作x轴的垂线,与直线OB交于点E。延长PE到点D。使得ED=PE。 以PD为斜边在PD右侧作等腰直角三角形PCD(当P点运动时,C点、D点也随之运动) j当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长; k若P点从O点出发向A点作匀速运动,速度为每秒1个单位,同时线段OA上另一点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动)。过Q点作x轴的垂线,与直线AB交于点F。延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q点运动时,M点,N点也随之运动)。若P点运动到t秒时,两个等腰直角三角形分别有一条直角边恰好落在同一条直线上,求此刻t的值。
已知四边形ABCD,E是CD上的一点,连接AE、BE.(1)给出四个条件: ① AE平分∠BAD,② BE平分∠ABC, ③ AE⊥EB,④ AB=AD+BC.请你以其中三个作为命题的条件,写出一个能推出AD∥BC的正确命题,并加以证明;(2)请你判断命题“AE平分∠BAD,BE平分∠ABC,E是CD的中点,则AD∥BC”是否正确,并说明理由.