如图,已知反比例函数y=过点P, P点的坐标为(3-m,2m),m是分式方程的解,PA⊥x轴于点A,PB⊥y轴于点B.(1)试判断四边形PAOB的形状,并说明理由.(2)连结AB,E为AB上的一点,EF⊥BP于点F,G为AE的中点,连结OG、FG,试问FG和OG有何数量关系?请写出你的结论并证明.(3)若M为反比例函数y=在第三象限内的一动点,过M作MN⊥x轴于交AB的延长线于点N,是否存在一点M使得四边形OMNB为等腰梯形?若存在,请求出M点的坐标;若不存在,请说明理由.
把下列各式分解因式(每题3分,共9分) ???
计算(每题3分,共9分)
如图,在△ABC中,∠B=90°,AB=6㎝,BC=8㎝。点P从A开始沿AB边向点B以1㎝∕s的速度移动,点Q从点B开始沿BC边向点C以2㎝∕s的速度移动。若P、Q分别从A、B同时出发, (1)如图(1),经过多少时间,△PBQ与△ABC相似? (2)如图(2),当P到B后又继续在BC上前进,Q到C后又继续在CA上前进,经过多少时间,可以使得△CPQ的面积为12.6㎝2?
“五一”将至,某商场计划进A、B两种型号的衬衣共80件,商场用于买衬衣的资金不少于4288元,但不超过4300元。两种型号的衬衣进价和售价如下表: (1)该商场对这种型号的衬衣有哪几种进货方案。 (2)该商场如何获得利润最大。 (3)现据商场测算,每件B型衬衣的售价不会改变,每件A型衬衣的售价将会提高m元(m>0),且所有的衬衣可全部售出,该商场又将如何进货才能满足获得利润最大。(注:利润=售价-成本)
有一客轮往返于重庆和武汉之间,第一次做往返航行时,长江的水流速度为a千米/小时;第二次做往返航行时,正遇上长江发大水,水流速度为b千米/小时(b>a)。已知该船在两次航行中,静水速度都为V千米/小时,问该船两次往返航行所花时间是否相等,若你认为相等,请说明理由;若你认为不相等,请分别表示出两次航行所花的时间,并指出哪次时间更短些?