如图,在△ABC中,∠C=90°,P为AB上一点,且点P不与点A重合,过点P作PE⊥AB交AC边上于E点,点E不与点C重合,若AB=10,AC=8,设AP的长为x,四边形PECB的周长为y,求y与x之间的函数关系式。
在△ABC中,AB=4,如图(1)所示,DE∥BC,DE把ABC分成面积相等的两部分,即SⅠ=SⅡ,求AD的长.如图(2)所示,DE∥FG∥BC,DE、FG把△ABC分成面积相等的三部分,即SⅠ=SⅡ=SⅢ,求AD的长;如图(3)所示,DE∥FG∥HK∥…∥BC,DE、FG、HK、…把△ABC分成面积相等的n部分,SⅠ=SⅡ=SⅢ=…,请直接写出AD的长.
如图1,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向点B运动,点Q从点B以2cm/s的速度沿BC边向点C运动,如果P、Q同时出发,设运动时间为ts,(1)当t=2时,求△PBQ的面积;(2)当t=时,试说明△DPQ是直角三角形;(3)当运动3s时,P点停止运动,Q点以原速立即向B点返回,在返回的过程中,DP是否能平分∠ADQ?若能,求出点Q运动的时间;若不能,请说明理由.
如图,直角三角形ABC到直角三角形DEF是一个相似变换,AC与DF的长度之比是3:2.(1)DE与AB的长度之比是多少?(2)已知直角三角形ABC的周长是12cm,面积是6cm2,求直角三角形DEF的周长与面积.
如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在BC、CD上,若△ADE∽△CMN,求CM的长.
如图,在等腰梯形ABCD中,∠B=60°,且AB=AD=CD,请你将等腰梯形分成3个三角形,使得其中有两个是相似三角形,且相似比不为1.现在请你参考示意图,另外再给出三种分割方法(注:在两个相似三角形中标明必要的角度.)