甲、乙两名篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为。(1)求乙投球的命中率。(2)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望。
(本小题满分12分)在几何体ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1 (Ⅰ)求证:DC∥平面ABE; (Ⅱ)求证:AF⊥平面BCDE; (Ⅲ)求证:平面AFD⊥平面AFE.
(本小题满分12分)在中,设内角A,B,C的对边分别为,向量,若 (1)求角的大小; (2)若且,求的面积.
(本小题满分12分)已知等比数列满足。 (1)求数列的通项公式; (2)设,,求数列的前项和。
(本小题满分12分)已知函数。 (1)求函数的最小正周期; (2)求函数的单调递增区间,并写出对称轴方程.
(本小题满分14分) 选修4-2:矩阵及其变换 (1)如图,向量被矩阵M作用后分别变成, (Ⅰ)求矩阵M; (Ⅱ)并求在M作用后的函数解析式; 选修4-4:坐标系与参数方程 ( 2)在直角坐标系中,直线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为。 (Ⅰ)求圆的直角坐标方程; (Ⅱ)设圆与直线交于点。若点的坐标为(3,),求。 选修4-5:不等式选讲 (3)已知为正实数,且,求的最小值及取得最小值时的值.