甲、乙两名篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为。(1)求乙投球的命中率。(2)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望。
(本小题满分13分)由于当前学生课业负担较重,造成青少年视力普遍下降,现从某中学随机抽取16名学生,经校医用对数视力表检査得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如右:(Ⅰ)若视力测试结果不低于5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;(Ⅱ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记表示抽到“好视力”学生的人数,求的分布列及数学期望.
(本小题满分13分)已知三棱锥,平面,,,.(Ⅰ)把△(及其内部)绕所在直线旋转一周形成一几何体,求该几何体的体积;(Ⅱ)求二面角的余弦值.
(本小题满分14分)已知函数,其中常数.(Ⅰ)当时,求函数的极值点;(Ⅱ)令,若函数在区间上单调递增,求的取值范围;(Ⅲ)设定义在D上的函数在点处的切线方程为当时,若在D内恒成立,则称P为函数的“特殊点”,请你探究当时,函数是否存在“特殊点”,若存在,请最少求出一个“特殊点”的横坐标,若不存在,说明理由.
(本小题满分12分)为了加快经济的发展,某市选择A、B两区作为龙头带动周边地区的发展,决定在A、B两区的周边修建城际快速通道,假设A、B两区相距个单位距离,城际快速通道所在的曲线为E,使快速通道E上的点到两区的距离之和为4个单位距离.(Ⅰ)以线段AB的中点O为原点建立如图所示的直角坐标系,求城际快速通道所在曲线E的方程;(Ⅱ)若有一条斜率为的笔直公路l与曲线E交于P,Q两点,同时在曲线E上建一个加油站M(横坐标为负值)满足,求面积的最大值.
(本小题满分12分)在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合于B,构成一个三棱锥(如图所示). (Ⅰ)在三棱锥上标注出、点,并判别MN与平面AEF的位置关系,并给出证明;(Ⅱ)是线段上一点,且, 问是否存在点使得,若存在,求出的值;若不存在,请说明理由;(Ⅲ)求多面体E-AFNM的体积.