如图,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm。点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止).设P、Q同时出发并运动了t秒。(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存在,求出这样的t的值,若不存在,请说明理由。
某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500kg;销售单价每涨1元,月销售量就减少10kg.针对这种水产品的销售情况,请解答以下问题: (1)当销售单价定为每千克55元时,计算月销售量和月销售利润; (2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式; (3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
如图,⊙O是△ABC的外接圆,AB为直径,,CD⊥AB于D,且交⊙O于G,AF交CD于E. (1)求∠ACB的度数; (2)求证:AE=CE
在一不透明的口袋中装有3个球,这3个球分别标有1,2,3,这些球除了数字外都相同. (1)如果从袋子中任意摸出一个球,那么摸到标有数字是2的球的概率是多少? (2)小明和小亮玩摸球游戏,游戏的规则如下:先由小明随机摸出一个球,记下球的数字后 放回,搅匀后再由小亮随机摸出一个球,记下数字.谁摸出的球的数字大 ,谁获胜.请你用树状图或列 表法分析游戏规则对双方是否公平?并说明理由.
下图是输水管的切面,阴影部分是有水部分,其中水面AB宽16㎝,水最深4㎝,求这个圆形切面的半径.
是某几何体的平面展开图,求图中小圆的半径.