已知椭圆C:.(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围;
.(本小题满分10分) 求(cos220°-)·(1+tan10°)的值.
.(本题10分)中心在原点,焦点在x轴上的椭圆C上的点到焦点距离的最大值为3,最小值为1. (1)求椭圆C的方程; (2)若直线与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求该定点的坐标.
(本题10分)在如图的长方体中,AD=AA1=1,AB=2,点E在棱AB上移动. (1)当E为AB的中点时,求点E到平面ACD1的距离; (2)AE等于何值时,二面角D1-EC-D的大小为.
(本题8分)如图,正三棱柱底面边长为. (1)若侧棱长为,求证:; (2)若AB1与BC1成角,求侧棱长
(本题8分)已知直线被抛物线C:截得的弦长. (1)求抛物线C的方程; (2)若抛物线C的焦点为F,求三角形ABF的面积.