已知椭圆C:.(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围;
设有关于的一元二次方程. (1)若是从集合中任取一个元素,是从集合中任取一个元素,求方程恰有两个不相等实根的概率; (2) 若是从集合中任取一个元素,是从集合中任取一个元素,求上述方程有实根的概率.
已知,设命题:函数为减函数.命题:当时,函数恒成立.如果命题“”为真命题,“”为假命题,求实数的取值范围.
已知函数. (1)若函数在区间上是减函数,求实数的取值范围; (2)令,是否存在实数,当时,函数的最小值为3,若存在,求出的值;若不存在,说明理由.
已知圆:. (1)若圆的切线在轴和轴上的截距相等,求此切线的方程. (2)从圆外一点向该圆引一条切线,切点为为坐标原点,且有,求使得取得最小值的点的坐标.
已知函数,. (1)求函数的最小值和最小正周期; (2)设的内角的对边分别为,且,,若向量与向量共线,求的值.