如图,已知平面,∥,是正三角形,且.(1)设是线段的中点,求证:∥平面; (2)求直线与平面所成角的余弦值.
求抛物线y=x2-1,直线x=2,y=0所围 成的图形的面积。
设数列满足,求, ,由此猜想的通项公式,并用数学归纳法证明你的结论。
如图,四棱锥S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的三等分点,SE=2EB (Ⅰ)证明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小 .
已知函数在与处都取得极值。 (1)求函数的解析式;(2)求函数在区间[-2,2]的最大值与最小值
求证: +>2+。