某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
已知函数.(1)当时,求的单调减区间;(2)若方程恰好有一个正根和一个负根,求实数的最大值.
在平面直角坐标系xOy中,已知椭圆C:的离心率为,且过点,过椭圆的左顶点A作直线轴,点M为直线上的动点,点B为椭圆右顶点,直线BM交椭圆C于P.(1)求椭圆C的方程;(2)求证:;(3)试问是否为定值?若是定值,请求出该定值;若不是定值,请说明理由.
如图,有一段河流,河的一侧是以O为圆心,半径为米的扇形区域OCD,河的另一侧是一段笔直的河岸l,岸边有一烟囱AB(不计B离河岸的距离),且OB的连线恰好与河岸l垂直,设OB与圆弧的交点为E.经测量,扇形区域和河岸处于同一水平面,在点C,点O和点E处测得烟囱AB的仰角分别为,和.(1)求烟囱AB的高度;(2)如果要在CE间修一条直路,求CE的长.
如图,四边形为矩形,四边形为菱形,且平面⊥平面,D,E分别为边,的中点.(1)求证:⊥平面;(2)求证:DE∥平面.
已知向量,,.(1)若⊥,求的值;(2)若∥,求的值.