两平行直线L1,L2分别过A(1,0) 与 B(0,5)点,若L1与L2之间的距离为5,求这两直线的方程
随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:
(Ⅰ)在4月份任取一天,估计西安市在该天不下雨的概率; (Ⅱ)西安市某学校拟从4月份的一个晴天开始举行连续两天的运动会,估计运动会期间不下雨的概率.
如图1,在直角梯形 A B C D 中, A D / / B C , ∠ B A D = π 2 , A B = B C = 1 2 A D = a , , E 是 A D 的中点, O 是 O C 与 B E 的交点,将 △ A B E 沿 B E 折起到图2中 △ A 1 B E 的位置,得到四棱锥 A 1 - B C D E .
(Ⅰ)证明: C D ⊥ 平面 A 1 O C ; (Ⅱ)当平面 A 1 B E ⊥ 平面 B C D E 时,四棱锥 A 1 - B C D E 的体积为 36 2 ,求 a 的值.
∆ A B C 的内角 A , B , C 所对的边分别为 a , b , c ,向量 m ⇀ = a , 3 b 与 n ⇀ = cos A , sin B 平行. (Ⅰ)求 A ; (Ⅱ)若 a = 7 , b = 2 ,求 ∆ A B C 的面积.
已知关于 x 的不等式 x + a < b 的解集为 { x | 2 < x < 4 } . (Ⅰ)求实数 a , b 的值; (Ⅱ)求 a t + 12 + b t 的最大值.
在直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴正半轴为极轴建立极坐标系.的极坐标方程为.
(Ⅰ)写出的直角坐标方程;
(Ⅱ)为直线上一动点,当到圆心的距离最小时,求的直角坐标.