直线过点(1,2)和第一,二,四象限,若的两截距之和为6。求直线的方程
已知函数,,对于任意的,都有.(1)求的取值范围(2)若,证明: ()(3)在(2)的条件下,证明:
如图,直角坐标系XOY中,点F在x轴正半轴上,的面积为S.且,设,.(1)以O为中心,F为焦点的椭圆E经过点G,求点G的纵坐标.(2)在(1)的条件下,当取最小值时,求椭圆E的标准方程.(3)在(2)的条件下,设点A、B分别为椭圆E的左、右顶点,点C是椭圆的下顶点,点P在椭圆E上(与点A、B均不重合),点D在直线PA上,若直线PB的方程为,且,试求CD直线方程.
已知函数(1)当时,求函数的单调区间.(2)若不等式对任意的恒成立,求a的取值范围.
如图,四棱锥S-ABCD的底面ABCD是直角梯形,侧面SAB是等边三角形,DA面SAB,DC//AB,AB=2AD=2DC,O,E分别为AB、SD中点.(1)求证:SO//面AEC BC面AEC(2)求二面角O—SD—B的余弦值.
某品牌汽车4s店对最近100位采用分期付款的购车者进行统计,统计结果如表所示:
已知分3期付款的频率为0.2,4s店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元,分2期或3期付款其利润为1.5万元,分4期或5期付款,其利润为2万元,用Y表示经销一辆汽车的利润.(1)求上表中a,b的值.(2)若以频率作为概率,求事件A:“购买该品牌汽车的3位顾客中,至多有一位采用3期付款”的概率P(A)(3)求Y的分布列及数学期望EY.