设椭圆的左、右焦点分别为,上顶点为,离心率为,在轴负半轴上有一点,且(Ⅰ)若过三点的圆恰好与直线相切,求椭圆C的方程;(Ⅱ)在(Ⅰ)的条件下,过右焦点作斜率为的直线与椭圆C交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围;如果不存在,说明理由.
在边长为1的正三角形中,求的值.
已知P1(3,2),P2(8,3),若点P在直线P1P2上,且满足|P1P|=2|PP2|,求点P的坐标。
已知a是以点A(3,-1)为起点,且与向量b= (-3,4)平行的单位向量,则向量a的终点坐标是多少?
(本小题满分12分)已知数列. (1)求数列的通项公式; (2)设,探求使恒成立的的最大整数值.
(本小题满分12分) 港口A北偏东30°方向的C处有一检查站,港口正东方向的B处有一轮船,距离检查站为31海里,该轮船从B处沿正西方向航行20海里后到达D处观测站,已知观测站与检查站距离21海里,问检查站C离港口A有多远?