抛物线交轴于、两点,交轴于点,已知抛物线的对称轴为,,,(1)求二次函数的解析式;在抛物线对称轴上是否存在一点,使点到、两点距离之差最大?若存在,求出点坐标;若不存在,请说明理由;平行于轴的一条直线交抛物线于两点,若以为直径的圆恰好与轴相切,求此圆的半径.
已知关于x的一元二次方程有两个不相等的实数根,k为正整数.(1)求k的值;(2)当次方程有一根为零时,直线与关于x的二次函数的图象交于A、B两点,若M是线段AB上的一个动点,过点M作MN⊥x轴,交二次函数的图象于点N,求线段MN的最大值及此时点M的坐标;(3)将(2)中的二次函数图象x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分保持不变,翻折后的图象与原图象x轴上方的部分组成一个“W”形状的新图象,若直线与该新图象恰好有三个公共点,求b的值.
如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.
根据某网站调查,2014年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其他共五类.根据调查的部分相关数据,绘制的统计图表如下:根据所给信息解答下列问题:(1)请补全条形统计图并在图中标明相应数据;(2)若菏泽市约有880万人口,请你估计最关注环保问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,试用列表或树形图的方法求抽取的两人恰好是甲和乙的概率.
如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,BC的延长线于⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF;(2)若AC=,CE:EB=1:4,求CE的长.
(1)已知m是方程的一个根,求的值;(2)一次函数与反比例函数()的图象都经过点A(1,m),的图象与x轴交于点B.①求点B的坐标及反比例函数的表达式;②点C(0,﹣2),若四边形ABCD是平行四边形,请在直角坐标系内画出▱ABCD,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.