抛物线交轴于、两点,交轴于点,已知抛物线的对称轴为,,,(1)求二次函数的解析式;在抛物线对称轴上是否存在一点,使点到、两点距离之差最大?若存在,求出点坐标;若不存在,请说明理由;平行于轴的一条直线交抛物线于两点,若以为直径的圆恰好与轴相切,求此圆的半径.
如图所示,已知△ABC中,AC=BC=6,∠C=90°.O是AB的中点,⊙O与AC相切于点D、与BC相切于点E.设⊙O交OB于F,连DF并延长交CB的延长线于G. (1)∠BFG与∠BGF是否相等?为什么? (2)求由DG、GE和所围成的图形的面积(阴影部分).
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E. (1)求证:AB=AC; (2)求证:DE为⊙O的切线; (3)若⊙O半径为5,∠BAC=60°,求DE的长.
三门旅行社为吸引市民组团去蛇蟠岛风景区旅游,推出如下收费标准: 某中学九(一)班去蛇蟠岛风景区旅游,共支付给三门旅行社旅游费用5888元,请问该班这次共有多少名同学去蛇蟠岛风景区旅游?
已知、、是△ABC的三条边,关于的一元二次方程有两个相等的实数根,方程的根为x=0。 (1)试判断△ABC的形状。 (2)若、为关于x的一元二次方程x2 +mx-3m=0的两个根,求m的值。
(1)半径为R的圆的面积恰好是半径为5与半径为2的两个圆面积之差,求R的值。 (2)某次商品交易会上,所有参加会议的商家之间都签订了一份合同,共签订合同36份,求共有多少商家参加了交易会?