如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点, HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?
已知函数(Ⅰ)若在是减函数,在是增函数,求实数的值;(Ⅱ)求实数的取值范围,使在区间上是单调函数,并指出相应的单调性.
已知函数,(Ⅰ)求的定义域和值域;(Ⅱ)判断函数在区间(2,5)上的单调性,并用定义来证明所得结论.
已知二次函数的最小值为-1,且,(Ⅰ)求的值;(Ⅱ)求在上的单调区间与值域.
已知函数,,.(1)当时,求函数的最大值和最小值;(2)若在区间,上是单调函数,求实数的取值范围;(3)记在区间,上的最小值为,求的表达式及值域.
“水”这个曾经人认为取之不尽用之不竭的资源,竟然到了严重制约我国经济发展,严重影响人民生活的程度。因为缺水,每年给我国工业造成的损失达2000亿元,给我国农业造成的损失达1500亿元,严重缺水困扰全国三分之二的城市。为了节约用水,某市打算出台一项水费政策,规定每季度每人用水量不超过5吨时,每吨水费1.2元,若超过5吨而不超过6吨时,超过的部分的水费加收200%,若超过6吨而不超过7吨时,超过部分的水费加收400%,如果某人本季度实际用水量为吨,应交水费为.(1)试求出函数的解析式;(2)若本季度他交了12.6元,求他本季度实际用水多少吨.