在△ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),△ABC可以绕点O作任意角度的旋转.(1) 当点B在第一象限,纵坐标是时,求点B的横坐标;(2) 如果抛物线(a≠0)的对称轴经过点C,请你探究:当,,时,A,B两点是否都在这条抛物线上?并说明理由
计算:。
如图,点P在平行四边形ABCD的CD边上,连结BP并延长与AD的延长线交于点Q. (1)求证:△DQP∽△CBP; (2)当△DQP≌△CBP,且AB=8时,求DP的长.
如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB. (1)求证:AD⊥CD; (2)若AD=2,AC=,求AB的长.
已知二次函数的图象经过点A(3,0),B(2,-3),C(0,-3). (1)求此函数的解析式及图象的对称轴; (2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒. ①当t为何值时,四边形ABPQ为等腰梯形; ②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值.
如图,点B和点C分别为∠MAN两边上的点,AB=AC. (1)按下列语句画出图形: ① AD⊥BC,垂足为D; ② ∠BCN的平分线CE与AD的延长线交于点E ③ 连结BE. (2)在完成(1)后不添加线段和字母的情况下,请你写出除△ABD≌△ACD外的两对全等三角形:≌,≌;并选择其中的一对全等三角形予以证明.