经过顶点的一条直线,.分别是直线上两点,且.(1)若直线经过的内部,且在射线上,请解决下面两个问题:①如图1,若,,则 ; (填“”,“”或“”);②如图2,若,请添加一个关于与关系的条件 ,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线经过的外部,,请提出三条线段数量关系的合理猜想(不要求证明).
解一元二次方程:
如图,抛物线y=ax2+2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A(﹣4,0)和B.(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CEQ的面积最大时,求点Q的坐标;(3)平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(﹣2,0).问是否有直线l,使△ODF是等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.
如图,AB是⊙O的直径,BC切⊙O于点B,连接CO并延长交⊙O于点D、E,连接AD并延长交BC于点F.(1)试判断∠CBD与∠CEB是否相等,并证明你的结论;(2)求证:=;(3)若BC=AB,求tan∠CDF的值.
某童装店到厂家选购A、B两种服装.若购进A种服装12件、B种服装8件,需要资金1880元;若购进A种服装9件、B种服装10件,需要资金1810元.(1)求A、B两种服装的进价分别为多少元?(2)销售一件A服装可获利18元,销售一件B服装可获利30元.根据市场需求,服装店决定:购进A种服装的数量要比购进B种服装的数量的2倍还多4件,且A种服装购进数量不超过28件,并使这批服装全部销售完毕后的总获利不少于699元.设购进B种服装x件,那么①请写出A、B两种服装全部销售完毕后的总获利y元与x件之间的函数关系式;②请问该服装店有几种满足条件的进货方案?哪种方案获利最多?
如图,在直角梯形ABCD中,AD∥BC,BC⊥CD,∠B=60°,BC=2AD,E、F分别为AB、BC的中点.(1)求证:四边形AFCD是矩形;(2)求证:DE⊥EF.