如图,ABCD是边长为1的正方形,其中、、的圆心依次是点A、B、C.(1)求点D沿三条圆弧运动到G所经过的路线长;(2)判断直线GB与DF的位置关系,并说明理由.
(本题8分) 某学习小组由3名男生和1名女生组成,在一次合作学习后,开始进行成果展示。如果随机抽取1名同学单独展示,那么女生展示的概率为 ;(2)如果随机抽取2名同学共同展示,求同为男生的概率
(本题8分) 如图,AD、BC是⊙O的两条弦,且AD=BC,求证:AB=CD。
(本题8分) 已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=-1时,y=1. 求x=时,y的值.
(本题8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2.(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标. (3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.
(本题6分)一只不透明的口袋中放着若干个黄球和绿球,这两种球除了颜色之外没有其它任何区别,袋中的球已经搅匀,从口袋中取出一个球取出黄球的概率为。(1)取出绿球的概率是多少?(2)如果袋中的黄球有12个,那么袋中的绿球有多少个?