(本题8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2.(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标. (3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.
某商店将进价为每件80元的某种商品按每件100元出售,每天可售出100件.经过市场调查,发现这种商品每件每降低1元,其销售量就可增加10件.(1)设每件商品降低售价元,则降价后每件利润 元,每天可售出 件(用含的代数式表示);(2)如果商店为了每天获得利润2160元,那么每件商品应降价多少元?
如图,△ABC在坐标平面内三个顶点的坐标分别为A(1,2)、B(3,3)、C(3,1).(1)根据题意,请你在图中画出△ABC;(2)在原图中,以B为位似中心,画出△A′BC′使它与△ABC位似且位似比是3:1,并写出顶点A′和C′的坐标.
在一个不透明的袋子中装有三个完全相同的小球,分别标有数字1,2,3,从袋子中随机取出一个小球,用小球上的数字作为十位数字,然后放回,再取出一个小球,用小球上的数字作为个位数字,这样组成一个两位数.(1)请用列表法或画树状图的方法求出能组成哪些两位数?(2)求组成的两位数能被2整除的概率.
为了测量旗杆的高度AB,在离旗杆10米的C处,用高1.2米的测角仪CD测得旗杆顶部A的仰角为40°,求旗杆AB的高.(精确到0.1米)(供选用的数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
如图,△ABC中,DE∥BC,EF∥AB.证明:△ADE∽△EFC.