(本题8分) 某学习小组由3名男生和1名女生组成,在一次合作学习后,开始进行成果展示。如果随机抽取1名同学单独展示,那么女生展示的概率为 ;(2)如果随机抽取2名同学共同展示,求同为男生的概率
如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示). (2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm²),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围.
如图,在平面直角坐标系中,直线y=-2x+42交x轴与点A,交直线y=x于点B,抛物线分别交线段AB、OB于点C、D,点C和点D的横坐标分别为16和4,点P在这条抛物线上.(1)求点C、D的纵坐标.(2)求a、c的值.(3)若Q为线段OB上一点,且P、Q两点的纵坐标都为5,求线段PQ的长.(4)若Q为线段OB或线段AB上的一点,PQ⊥x轴,设P、Q两点之间的距离为d(d>0),点Q的横坐标为m,直接写出d随m的增大而减小时m的取值范围.(参考公式:二次函数图像的顶点坐标为)
感知:如图①,点E在正方形ABCD的BC边上,BF⊥AE于点F,DG⊥AE于点G.可知△ADG≌△BAF.(不要求证明)拓展:如图②,点B、C在∠MAN的边AM、AN上,点E, F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF.应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边B上.CD=2BD.点E, F在线段AD上.∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为_________.
某加工厂为赶制一批零件,通过提高加工费标准的方式调动工人的积性.工人每天加工零件获得的加工费y(元)与加工个数x(个)之间的函数图像为折线OA-AB-BC,如图所示.(1)求工人一天加工费不超过20个时每个零件的加工费.(2)求40≤x≤60时y与x的函数关系式.(3)小王两天一共加工了60个零件,共得到加工费220元,在这两天中,小王第一天加工的零件不足20个,求小王第一天加工零件的个数.
如图,在平面直角坐标系中,OABC的顶点A, C的坐标分别为A(2,0),C(-1,2),反比例函数的图像经过点B.(1)求k的值.(2)将OABC沿着x轴翻折,点C落在点C′处.判断点C′是否在反比例函数的图像上,请通过计算说明理由.