已知与圆C:x2+y2-2x-2y+1=0相切的直线l交x轴,y轴于A,B两点,OA|=a,|OB|=b(a>2,b>2).(Ⅰ)求证:(a-2)(b-2)=2;(Ⅱ)求线段AB中点的轨迹方程;(Ⅲ)求△AOB面积的最小值.
已知点到定点的距离与它到直线的距离之比为常数,求点的轨迹。
椭圆的离心率为,长轴长为,在椭圆上有一点到左准线的距离为,求点到右准线的距离。
设为抛物线上位于轴两侧的两点。(1)若,证明直线恒过一个定点;(2)若,为钝角,求直线在轴上截距的取值范围。
设点求抛物线上的点到点的距离的最小值。
经过抛物线的焦点作一直线,和抛物线相交于,求的长。