已知函数=+有如下性质:如果常数>0,那么该函数在0,上是减函数,在,+∞上是增函数.(Ⅰ)如果函数=+(>0)的值域为6,+∞,求的值;(Ⅱ)研究函数=+(常数>0)在定义域内的单调性,并说明理由;(Ⅲ)对函数=+和=+(常数>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数(是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).
某厂工人在2006年里有1个季度完成生产任务,则得奖金300元;如果有2个季度完成生产任务,则可得奖金750元;如果有3个季度完成生产任务,则可得奖金1260元;如果有4个季度完成生产任务,可得奖金1800元;如果工人四个季度都未完成任务,则没有奖金,假设某工人每季度完成任务与否是等可能的,求他在2006年一年里所得奖金的分布列.
假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:若由资料知,y对x呈线性相关关系,试求:(1)回归直线方程;(2)估计使用年限为10年时,维修费用约是多少?
在调查学生数学成绩与物理成绩之间的关系时,得到如下数据(人数):
试判断数学成绩与物理成绩之间是否线性相关,判断出错的概率有多大?
某医院有内科医生12名,外科医生8名,现要派5名医生参加赈灾医疗队,则:(1)某内科医生必须参加,某外科医生不能参加,有多少种选法?(2)至少有一名内科医生且至少有一名外科医生参加有几种选法?
己知双曲线C:与直线l:x + y = 1相交于两个不同的点A、B (I) 求双曲线C的离心率e的取值范围;(Ⅱ) 设直线l与y轴交点为P,且,求的值。