己知双曲线C:与直线l:x + y = 1相交于两个不同的点A、B (I) 求双曲线C的离心率e的取值范围;(Ⅱ) 设直线l与y轴交点为P,且,求的值。
某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励. (Ⅰ)求1名顾客摸球3次停止摸奖的概率; (Ⅱ)记为1名顾客摸奖获得的奖金数额,求随机变量的分布列和数学期望.
如图,在直角坐标系中,角的顶点是原点,始边与轴正半轴重合,终边交单位圆于点,且.将角的终边按逆时针方向旋转,交单位圆于点.记. (Ⅰ)若,求; (Ⅱ)分别过作轴的垂线,垂足依次为.记△的面积为,△的面积为.若,求角的值.
设是由个实数组成的行列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”. (Ⅰ) 数表如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可); 表1
(Ⅱ) 数表如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数的所有可能值; 表2 (Ⅲ)对由个整数组成的行列的任意一个数表,能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负整数?请说明理由.
已知椭圆C:的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点. (I)求椭圆C的方程; (II)若直线y =kx交椭圆C于A,B两点,在直线l:x+y-3=0上存在点P,使得 ΔPAB为等边三角形,求k的值.
已知函数, (Ⅰ)当a=1时,若曲线y=f(x)在点M (x0,f(x0))处的切线与曲线y=g(x)在点P (x0, g(x0))处的切线平行,求实数x0的值; (II)若(0,e],都有f(x)≥g(x)+,求实数a的取值范围.