(本小题满分12分)已知函数.(Ⅰ)求的值域和对称中心;(Ⅱ)设,且,求的值.
(本小题满分12分)数列满足,().(1)求证是等差数列;(要指出首项与公差);(2) 求数列的通项公式;(3)若Tn= ,求证:
(本小题满分12分)如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.
已知函数的值满足,对任意实数x、y都有,且f(-1)=1,f(27)=9,当0<x<1时,.(1)求的值,判断的奇偶性并证明;(2)判断在(0,+∞)上的单调性,并给出证明;(3)若且,求a的取值范围。
(满分13分)已知奇函数。(1)求的定义域;(2)求a的值;(3)证明时,
(满分12分)有一个自来水厂,蓄水池有水450吨. 水厂每小时可向蓄水池注水80吨,同时蓄水池又向居民小区供水,t小时内供水量为160吨. 现在开始向池中注水并同时向居民供水. 问多少小时后蓄水池中水量最少?并求出最少水量.