设是定义在上的函数,若存在,使得在上单调递增,在上单调递减,则称为上的单峰函数,为峰点,包含峰点的区间为含峰区间. 对任意的上的单峰函数,下面研究缩短其含峰区间长度的方法.(1)证明:对任意的,,若,则为含峰区间;若,则为含峰区间;(2)对给定的,证明:存在,满足,使得由(1)所确定的含峰区间的长度不大于;
用数学归纳法证明:
设函数,曲线在点处的切线方程为,求的解析式.
m取何实数时,复数 (1)是实数?(2)是虚数?(3)是纯虚数?
已知是公差为d的等差数列,是公比为q的等比数列 (Ⅰ)若 ,是否存在,有?请说明理由; (Ⅱ)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件; (Ⅲ)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.
已知函数的图象过坐标原点O,且在点处的切线的斜率是. (Ⅰ)求实数的值; (Ⅱ)求在区间上的最大值; (Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.