用数学归纳法证明:
已知函数为常数). (1)求函数的最小正周期;(2)求函数的单调递增区间; (3)若时,的最小值为 – 2 ,求的值.
已知,且,求的值.
求值:
.已知正项数列的首项前项和为,且满足. (Ⅰ)求与 (Ⅱ)从集合取出三个数构成以正整数为公比的递增等比数列,放回后再取出三个数构成以正整数为公比的递增等比数列,相同的数列只取一次,按照上述取法取下去,直到取完所有满足条件的数列为止。求满足上述条件的所有的不同数列的和M.
在中,是角A,B,C的对边,且. (Ⅰ)求角B. (Ⅱ)若的面积且,求.