已知是定义在上的不恒为零的函数,且对定义域内的任意x, y, f (x)都满足.(1)求f (1)、f (-1)的值; (2)判断f (x)的奇偶性,并说明理由;(3)证明:(为不为零的常数)
(本小题共13分)某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取球.获奖规则如下:依次取到标有“生”“意”“兴”“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖. (Ⅰ)求分别获得一、二、三等奖的概率; (Ⅱ)设摸球次数为,求的分布列和数学期望.
(本小题共14分)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=. (Ⅰ)若点M是棱PC的中点,求证:PA // 平面BMQ; (Ⅱ)求证:平面PQB⊥平面PAD; (Ⅲ)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值 .
(本小题共13分)在△ABC中,a,b,c分别为内角A,B,C的对边,且b2+c2-a2=bc. (Ⅰ)求角A的大小; (Ⅱ)设函数,当取最大值时,判断△ABC的形状.
(本小题共14分)对于,定义一个如下数阵: 其中对任意的,,当能整除时,;当不能整除时,.设. (Ⅰ)当时,试写出数阵并计算; (Ⅱ)若表示不超过的最大整数,求证:; (Ⅲ)若,,求证:.
(本小题共13分)已知椭圆的离心率为,且两个焦点和短轴的一个端点是一个等腰三角形的顶点.斜率为的直线过椭圆的上焦点且与椭圆相交于,两点,线段的垂直平分线与轴相交于点. (Ⅰ)求椭圆的方程; (Ⅱ)求的取值范围; (Ⅲ)试用表示△的面积,并求面积的最大值.