如图,直线分别交轴,轴于两点,以为边作矩形,为的中点.以,为斜边端点作等腰直角三角形,点在第一象限,设矩形与重叠部分的面积为.(1)求点的坐标;(2)当值由小到大变化时,求与的函数关系式;(3)若在直线上存在点,使等于,求出的取值范围;(4)在值的变化过程中,若为等腰三角形,请直接写出所有符合条件的值.
如图,抛物线y=ax2+bx+c的开口向下,与x轴交于点A(﹣3,0)和点B(1,0).与y轴交于点C,顶点为D. (1)求顶点D的坐标.(用含a的代数式表示); (2)若△ACD的面积为3. ①求抛物线的解析式; ②将抛物线向右平移,使得平移后的抛物线与原抛物线交于点P,且∠PAB=∠DAC,求平移后抛物线的解析式.
如图所示,某学校拟建一个含内接矩形的菱形花坛(花坛为轴对称图形).矩形的四个顶点分别在菱形四条边上,菱形ABCD的边长AB=4米,∠ABC=60°.设AE=x米(0<x<4),矩形EFGH的面积为S米2. (1)求S与x的函数关系式; (2)学校准备在矩形内种植红色花草,四个三角形内种植黄色花草.已知红色花草的价格为20元/米2,黄色花草的价格为40元/米2.当x为何值时,购买花草所需的总费用最低,并求出最低总费用(结果保留根号)?
如图,直线l:y=x+1与x轴、y轴分别交于A、B两点,点C与原点O关于直线l对称.反比例函数的图象经过点C,点P在反比例函数图象上且位于C点左侧,过点P作x轴、y轴的垂线分别交直线l于M、N两点. (1)求反比例函数的解析式; (2)求AN•BM的值.
如图,ABCD中,AB=2,以点A为圆心,AB为半径的圆交边BC于点E,连接DE、AC、AE. (1)求证:△AED≌△DCA; (2)若DE平分∠ADC且与⊙A相切于点E,求图中阴影部分(扇形)的面积.
定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点. 如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D. (1)求证:点D是线段AC的黄金分割点; (2)求出线段AD的长.