提高南洋大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数.(Ⅰ)当时,求函数的表达式; (Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时) 可以达到最大,并求出最大值.(精确到1辆/小时)
已知首项为的等比数列{an}是递减数列,其前n项和为Sn,且S1+a1,S2+a2,S3+a3成等差数列. (Ⅰ)求数列{an}的通项公式; (Ⅱ)若,数列{bn}的前n项和Tn,求满足不等式≥的最大n值.
已知向量a=,b=,设函数=ab. (Ⅰ)求的单调递增区间; (Ⅱ)若将的图象向左平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.
已知圆的圆心在直线上,且与直线相切于点. (Ⅰ)求圆方程; (Ⅱ)点与点关于直线对称.是否存在过点的直线,与圆相交于两点,且使三角形(为坐标原点),若存在求出直线的方程,若不存在用计算过程说明理由.
如图,平面,是矩形,,点是的中点,点是边上的动点. (Ⅰ)求三棱锥的体积; (Ⅱ)当点为的中点时,试判断与平面的位置关系,并说明理由; (Ⅲ)证明:无论点在边的何处,都有.
两城相距,在两地之间距城处地建一核电站给两城供电.为保证城市安全,核电站距城市距离不得少于.已知供电费用(元)与供电距离()的平方和供电量(亿度)之积成正比,比例系数,若城供电量为亿度/月,城为亿度/月. (Ⅰ)把月供电总费用表示成的函数,并求定义域; (Ⅱ)核电站建在距城多远,才能使供电费用最小,最小费用是多少?