如图,梯形ABCD的底边AB在y轴上,原点O为AB的中点,M为CD的中点.(1)求点M的轨迹方程;(2)过M作AB的垂线,垂足为N,若存在正常数,使,且P点到A、B 的距离和为定值,求点P的轨迹E的方程;(3)过的直线与轨迹E交于P、Q两点,求面积的最大值.
掷3枚均匀硬币一次,求正面个数与反面个数之差X的分布列,并求其均值。
从1到9的九个数字中取三个偶数四个奇数,试问: ①能组成多少个没有重复数字的七位数? ②上述七位数中三个偶数排在一起的有几个? ③在①中的七位数中,偶数排在一起、奇数也排在一起的有几个? ④在①中任意两偶然都不相邻的七位数有几个?
已知的展开式的各项系数之和等于展开式中的常数项,求展开式中含的项的二项式系数.
甲、乙两人独立地破译1个密码,他们能译出密码的概率分别为和,求 (1)恰有1人译出密码的概率; (2)若达到译出密码的概率为,至少需要多少乙这样的人.
已知函数,求函数的值域 (2)求不等式:的解集.